Physical and Inorganic Chemistry

The Crystal and Molecular Structure of the Cyclohexaamylose-Potassium Acetate Complex ${ }^{1}$

Albert Hybl, ${ }^{2}$ Robert E. Rundle, ${ }^{3}$ and Donald E. Williams
Contribution from the Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa. Received August 13, 1964

The crystal and molecular structure of the potassium acetate complex of cyclohexaamylose (CHA) has been solved using three-dimensional X-ray diffraction data. The $\alpha-\mathrm{D}-\mathrm{glucose}$ units are all in the pyranose staggered chair form with the Cl conformation (1a2e3e4e5e). CHA shows approximate sixfold molecular symmetry. The principal feature of the α-(1,4)-glucosidic linkage is a hydrogen bond (2.852 \AA.) between atoms O_{2} and O_{3} of each contiguous pair of glucose residues. The linkage valence angle is 119.1°. The mean $C-C$ and C - O distances are 1.528 and $1.426 \AA$. The bond angles for the glucose residues are within normal limits. An analysis of the anisotropic thermal motion shows that the CHA molecule is vibrating as a unit with superimposed glucose unit librations about the glucosidic linkages. A detailed structural model for V-amylose is proposed based on the CHA structure. The CHA molecules form a rigid framework permeated by continuous channels and cavities analogous to the zeolite molecular sieves. The K^{+}ions are in distorted octahedral environments located in pockets on the outside of the CHA channels. The K^{+}statistically occupy only about three of four symmetry equivalent sites in each unit cell.
(1) (a) Supported in part by a grant from the Corn Industries Research Foundation. Work was performed in part in the Ames Laboratory of the U. S. Atomic Energy Commission (Contribution No. 1529). Requests for reprints can be addressed to Document Library, Institute for Atomic Research, lowa State University, Box 1129 ISU Station, Ames, Iowa 50012. Other inquiries should be addressed to the first-named author. (b) A more detailed form of this paper (or extended version, or material supplementary to this article) has been deposited as Document No. 8330 with the ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington 25, D. C. A copy may be secured by citing the document number and by remitting $\$ 2.50$ for photoprints, or $\$ 1.75$ for $35-\mathrm{mm}$. microfilm. Advance payment is required. Make checks or money orders payable to: Chief, Photoduplication Service, Library of Congress.
(2) Corn Industries Postdoctoral Fellow, 1961-1964.
(3) Deceased, Oct. 9, 1963.

Two Ac $^{-}$anions are at pseudo-fluid sites inside the CHA channel framework. The crystals exhibit space group symmetry $P 2_{1} 2_{1} 2$ with lattice parameters $a=21.89$, $b=16.54$, and $c=8.30 \AA$. Each unit cell contains $2 \mathrm{CHA}, 3.08 \mathrm{KAc}$, and $19.4 \mathrm{H}_{2} \mathrm{O}$. The final R value was 0.10 for observed data.

Introduction

The anomeric form of D -glucose is responsible for the remarkable differences in chemical and physical properties between cellulose and amylose. The flexibility of the amylose chain is the most important difference in the properties of cellulose and starch. This flexibility is not understood but is well illustrated by the many crystalline forms of starch, many with very different fiber repeat distances.

The conformation of the amylose chain depends on both the conformation of the glucose units and the geometry of the $\alpha-(1,4)$ linkages. From results on cuprammonium complex formation, Reeves ${ }^{4.5}$ postulated that the amylose chain most likely contains combinations of either B1 and B3 boat forms or B1 and Cl forms. Bentley ${ }^{6}$ claims that the reducing glucose in maltose is Cl while the nonreducing residue is a boat form intermediate between Bl and 3B. Recent n.m.r. studies of polymers of D-glucose by Rao and Foster ${ }^{7}$ indicated that all of the glucopyranose residues have the Cl chair conformation.

[^0]Rundle and co-workers ${ }^{8-10}$ proposed a helical structure for the V form of amylose from X -ray studies of the butanol and iodine complexes. Although it was established that the helix contained six glucose residues per turn, no information concerning the conformation of the glucose units nor about the geometry of the linkages were obtained. Holló, Szejtle, and Toth ${ }^{11}$ concluded from models that only the Cl and Bl glucose conformations were suited for formations of helices, whereas Freudenberg and Cramer ${ }^{12}$ suggest the 3B conformation from similar studies.
Cyclohexaamylose (CHA), one of the Schardinger dextrins ${ }^{13}$ obtained from starch by the action of Bacillus macerans, is composed of six glucopyranose rings linked together to form a macro-ring by α -(1,4)-glucosidic linkages. The obvious structural similarity and analogous complexing behavior between CHA and the amylose helix make CHA an ideal model compound for studying both the conformation of the glucose units and the geometry of the α-(1,4)-glucosidic linkage.
James, French, and Rundle ${ }^{14}$ attempted an X-ray crystal structure analysis of the $\mathrm{CHA} \cdot \mathrm{I}_{2}$ complex. They located the iodine atoms but were unable to resolve the carbohydrate. The unit cell and space group data for several of the crystalline complexes of CHA have been determined by French. ${ }^{15}$ The KAc complex appeared particularly favorable for a complete structure analysis.

The purpose of this paper is to report the results of a complete three-dimensional crystal structure analysis of the cyclohexaamylose-potassium acetate complex and to interpret these results in terms of their contribution to the better understanding of the chemistry and structure of starch.

Crystal Data

Crystals of cyclohexaamylose-potassium acetate were obtained by evaporation of an aqueous solution of CHA containing at least a twofold excess of KAc. When exposed to air the crystals effloresced. Subsequently all diffraction experiments were made with the apparatus enclosed in a polyethylene tent, with the relative humidity controlled to $60 \pm 10 \%$. The crystals are orthorhombic prisms bounded by $\{110\}$ and $\{001\}$ forms. The density of the crystals was measured to be $1.434 \mathrm{~g} . / \mathrm{cc}$. by flotation in a mixture of bromobenzene and o-dichlorobenzene. The analytical composition of the unit cell was found to be $2\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{\dot{b}}\right)_{6} \cdot 3.08(\mathrm{KAc})$. 19.4($\left.\mathrm{H}_{2} \mathrm{O}\right)$. The KAc to carbohydrate ratio was obtained from a potassium analysis of thoroughly desiccated crystals. The amount of water was computed from the observed density of the crystals.

X-Ray diffraction photographs confirmed the orthorhombic space group $\mathrm{P}_{1} 2_{12}$ reported by French. ${ }^{15}$ The lattice constants, measured by the back reflection Weissenberg method, are $a=21.89, b=16.54$, and $c=8.30 \AA$.

[^1]
Collection and Treatment of Intensity Data

Two complete sets of X-ray diffraction intensity data were obtained using a General Electric single crystal orienter and scintillation counter with nickel-filtered copper X-radiation. Each set of data consisted of the intensities of 2559 reflections. The first set was obtained from two crystals using the moving crystalmoving counter method. The second set of data was obtained rapidly from one crystal by the stationary crystal-stationary counter method.

During the period that intensity measurements were being made, the reflections decreased steadily in intensity. An especially large decrease in the intensity of the (007) reflection was noted, and the crystal decomposition was frequently accompanied by cracking of the crystal parallel to the (007) planes.

Crystal no. 1 decomposed after 15 days of measurement, during which time 1734 intensities were obtained. The remainder of the moving crystal-moving counter data were obtained from crystal no. 2; at the end of 9 days of measurement crystal no. 2 was still intact, with the (007) reflection reduced to 80% of its initial value and the average reflection reduced to 85% of its original value.

Since it was desired to have a complete set of intensity data from one crystal, all 2559 reflections were remeasured rapidly by the stationary crystal-stationary counter method on crystal no. 3. At the end of the measurements the crystal appeared intact, although the intensity of the (007) reflection had declined to 55% of its initial value.

Several standard reflections, including the (007) reflection, were followed during the course of the measurements. A linear decline line was graphically estimated for these standard reflections. Subsequently all intensities were corrected back to zero time by use of this linear decline line for each crystal. Background counts were obtained from a plot of average background vs. 2θ.

The observed structure factors were obtained from the observed total and background counts by applying the Lorentz, polarization, and linear decline corrections. A counter nonlinearity correction was applied to the crude count totals. The method of estimating the errors in the structure factors has been discussed previously. ${ }^{16}$ For these data, errors in addition to the usual statistical counting errors were estimated as 8% for both the total counts and the background counts. The weighting factors which were used for the leastsquares refinement were $\left[s\left(F_{0}{ }^{2}\right)\right]^{-2}$, where $s\left(F_{0}{ }^{2}\right)$ is the estimated error in $F_{0}{ }^{2}$. For purposes of calculating the discrepancy index, R, a reflection was designated as "unobserved" if $F_{0}{ }^{2}<2.25 s\left(F_{0}{ }^{2}\right)$.

The data which were used for the structural analysis are primarily the stationary crystal data, using the moving crystal data for checking and correction where necessary. The intensity disagreement index, $\Sigma \mid I$ (moving) - I(stationary) $\mid \Sigma I$ (stationary), between the two sets of data was calculated to be 0.09 . As a result of a comparison of the two sets of data, a total of 117 changes were made in the stationary crystal data. Of these, 71 could be ascribed to a specific cause, such as an incorrect angular setting; in these

[^2]cases the properly scaled moving crystal intensity was inserted into the stationary data. In the remaining 46 cases the discrepancy could not be assigned to any specific cause, and the mean of the moving and stationary values was used, with an increased error estimate.

The resulting corrected stationary crystal data were used without further change in all subsequent work. These observed structure factors are listed in Table IV. A Wilson's plot for the data yielded an approximate scale factor and a temperature factor coefficient, B, of $4.14 \AA .^{-2}$. The scattering factor tables for H, C, O , and K used throughout this investigation are equivalent to those given in the "International Tables." ${ }^{17}$

Computational Procedures

(i) Description of Programs Used in the Refinement. Refinement of this structure was carried out. using the Iowa State University IBM 7074 computer using programs written by A. H. The Fortran II structurefactor and least-squares program incorporated the triclinic structure factor (SF) expressions of the "International Tables,, ${ }^{18}$ the slightly modified monoclinic expressions of Rollett and Davies, ${ }^{19}$ and the orthorhombic space group expressions of Hybl and Marsh. ${ }^{20}$ The least-squares (LS) normal equations are semidiagonalized, a $3 \times 3(x, y$, and z coordinates) and either a 2×2 (isotropic temperature and population parameters) or a 7×7 (anisotropic temperature and population parameters) matrix being collected for each atom. Adjustments to the over-all scale factor are obtained from a weighted average of the indicated changes for the individual atoms. The quantity minimized is $\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$. The program contains provisions for rigid-body (RB) refinement using the expressions developed in the next section. Up to 100 atoms can be refined either as independent atoms or as members of any one of up to nine RB groups.

A space group specific Fourier program was written in Fortran. The Beevers-Lipson summation technique was used for intervals of $1 / 60$ of the cell edge. A complete three-dimensional Fourier is computed in about 4 min .
(ii) Theory of Rigid-Body Least Squares. The rigidbody (RB) transformation can be written

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{i}=\mathbf{O}^{-1}\left[\mathbf{R}\left(\begin{array}{l}
U \\
V \\
W
\end{array}\right)_{i}+\left(\begin{array}{c}
T x \\
T y \\
T z
\end{array}\right)\right]
$$

where $(x, y, z)_{i}$ are the unit cell fractional coordinates, \mathbf{O}^{-1} is the inverse of the orthonormalization matrix, \mathbf{R} is the best available RB rotation matrix, $(U, V, W)_{i}$ are the coordinates of the corresponding atoms of the RB unit relative to some molecular axes (say, for example, the molecule's inertia axes with the center of mass of the unit at the origin), and ($T x, T y, T z$) are the best available RB translation components. The concept of RB-LS is to adjust only the rotation and trans-
(17) J. A. Ibers in "International Tables for X-ray Crystallography," Vol. III, K. Lonsdale, Ed., Kynoch Press, Birmingham, England, 1962, p. 202.
(18) N. F. M. Henry and K. Lonsdale, Ed., "International Tables for X-ray Crystallography," Vol. I, Kynoch Press, Birmingham, England, 1952, p. 374.
(19) J. S. Rollett and D. R. Davies, Acta Cryst., 8, 125 (1955).
(20) A. Hybl and R. E. Marsh, ibid., 14, 1046 (1961).
lation components of the RB units in order to achieve an intermolecular refinement while holding rigid the "expected" intramolecular distances and angles.

The problem is to evaluate the components of an infinitesimal rotation matrix (IR) using the derivatives of the individual atoms. The usual form of the structure factor residual equation is

$$
V q=\sum_{i=1}^{N}\left(\begin{array}{lll}
P x & P y & P z
\end{array}\right)_{i}\left(\begin{array}{l}
\mathrm{d} x \\
\mathrm{~d} y \\
\mathrm{~d} z
\end{array}\right)_{i}-\Delta G
$$

where $\Delta G=\left|F_{\mathrm{o}}\right|^{2}-\left|F_{\mathrm{c}}\right|^{2}$ and $P x=\left(\partial\left|F_{\mathrm{c}}\right|^{2} / \partial x\right)_{i}$, etc. The constrained set of coordinate differentials is related to the RB infinitesimals ${ }^{21}$ by the relation

$$
\left(\begin{array}{l}
\mathrm{d} x \\
\mathrm{~d} y \\
\mathrm{~d} z
\end{array}\right)_{i}=\mathbf{O}^{-1}\left[\mathbf{R}\left(\begin{array}{ccc}
0 & R w & -R v \\
-R w & 0 & R u \\
R v & -R u & 0
\end{array}\right)\left(\begin{array}{l}
U \\
V \\
W
\end{array}\right)_{\mathrm{a}}+\left(\begin{array}{l}
\mathrm{d} T x \\
\mathrm{~d} T y \\
\mathrm{~d} T z
\end{array}\right)\right]
$$

where $R u$ is the infinitesimal rotation around the u-axis, etc. The expression rearranges to

$$
\left(\begin{array}{l}
\mathrm{d} x \\
\mathrm{~d} y \\
\mathrm{~d} z
\end{array}\right)_{i}=\mathbf{O}^{-1}\left[\mathrm{R}\left(\begin{array}{rrr}
0 & -W & V \\
W & 0 & -U \\
-V & U & 0
\end{array}\right)_{i}\left(\begin{array}{l}
R u \\
R v \\
R w
\end{array}\right)+\left(\begin{array}{l}
\mathrm{d} T x \\
\mathrm{~d} T y \\
\mathrm{~d} T z
\end{array}\right)\right]
$$

which is substituted into the SF residual equation. The modified residual equation is thus linear in the RB rotational and translational terms and can be used in the usual way to obtain the LS normal equations.

The post matrix multiplication of \mathbf{R} by the IR matrix

$$
\left(\begin{array}{ccc}
1 & R w & -R v \\
-R w & l & R u \\
R v & -R u & 1
\end{array}\right)
$$

will produce a new RB rotation matrix \mathbf{R}; however, if used in this form, it will introduce small distortions into the transformed RB molecule owing to the slight nonorthogonality of the IR matrix. Whittaker ${ }^{22}$ has shown how to orthonormalize this type of matrix. He defines $M^{2}=0.25\left(R u^{2}+R v^{2}+R w^{2}\right)$ and $S^{2}=1$ $-M^{2}$. The components of the orthonormalized correction matrix (C) become $C 11=0.25\left(R u^{2}-R v^{2}-\right.$ $\left.R w^{2}\right)+S^{2}, C 12=0.5 R u R v+R w S, C 13=0.5 R u R w$ $-R v S, C 21=0.5 R u R v-R w S, C 22=0.25\left(-R u^{2}+\right.$ $\left.R v^{2}-R w^{2}\right)+S^{2}, C 23=0.5 R v R w+R u S, C 31=$ $0.5 R u R w+R v S, C 32=0.5 R v R w-R u S, C 33=$ $0.25\left(-R u^{2}-R v^{2}+R w^{2}\right)+S^{2}$. The new undistorted \mathbf{R} is obtained via \mathbf{R} (new) $=\mathbf{R}$ (old) \mathbf{C} and $T x$ (new) $=$ $T x($ old $)+\mathrm{d} T x$, etc.

By iterative application of the RB-LS process one obtains a refined rotation matrix and translation vector for each RB unit. The translation components parallel to the molecular axes system are given by

$$
\left(\begin{array}{c}
T u \\
T v \\
T w
\end{array}\right)=\mathbf{R}^{-1}\left(\begin{array}{c}
T x \\
T y \\
T z
\end{array}\right)
$$

Determination of the Structure of Cyclohexaamylose

(i) Analysis of the Projection Data. The ($h k 0$) Patterson projection shown in Figure 1 exhibits a re-

[^3]

Figure 1. The ($h k 0$) Patterson map of cyclohexaamylose.
markable resemblance to the Patterson pattern of a benzene ring. By equating a glucose residue to each of the carbon atoms in the benzene ring, the orientation of the macro-ring structure of CHA can be easily recognized; two para-glucose units must lie on the x-axis with the y-axis separating the remaining glucose units. The z-axis is normal to the plane of the macro-ring and coincident with the pseudo-hexagonal symmetry axis of CHA.

A detailed trial model was next formulated. (The naming of the atoms is explained in Figure 4.) The pyranose structure of the glucose residues was assumed to occur in the normal staggered chair form as has been found in all sugars hitherto studied. The atomic coordinates of α-D-glucose reported by McDonald and Beevers ${ }^{23}$ were transformed for use as a "reference" residue. It was further assumed that the six glucosidic linkage oxygen atoms were coplanar and arranged in a regular hexagonal constellation with the distance along any side equal to the $\mathrm{O}_{1}-$ to $-\mathrm{O}_{4}$ separation in the reference glucose residue. The final assumption involved the amount of rotation about an axis through the O_{1} and O_{4} atoms. This was assumed to be determined by a $2.80-\AA . \mathrm{O}_{2}-\mathrm{O}_{3}$ interglucose hydrogen bond. Combining this set of assumptions with the results of the Patterson map gave a trial structure and, subsequently, an electron density projection onto (001).

The (001) Fourier confirmed the general character of the trial model. Each glucose residue was resolved into two peaks with atoms $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{O}_{2}$, and O_{5} clustered into the smaller peak and atoms $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{O}_{3}$, and O_{6} clustered into the larger peak. A 10° counterclockwise rotation about the z-axis was indicated. The improved resolution of a subsequent electron density map revealed some new features interpreted as water peaks appearing just outside the cyclodextrin ring near the C_{1} clusters.
(ii) Analysis in Three Dimensions. In many instances heavy atoms incorporated into the crystal
(23) T. R. R. McDonald and C. A. Beevers, Acta Cryst., 5, 654 (1952).
assist and expedite the structural analysis. In this instance the potassium atoms provided no help in solving the structure. The first set of gravimetric results erroneously indicated a ratio of one K^{+}to one CHA molecule and resulted in a fruitless search for K^{+} at the special positions along the twofold axis.

We concluded that most of the atoms had to lie close to planes separated by $c / 7 \AA$. with only a few intercalated atoms from the fact that the (007) reflection had near maximal intensity. A three-dimensional unsharpened Patterson map clearly confirmed the sixfold molecular symmetry of CHA ; the benzene-like pattern was evident on almost every layer except for one large nonbenzene peak with maximum on the 17 60th layer along c. We interpreted this peak as arising from the overlapping of several interglucose vectors between molecules related by a 2_{1} axis with the z value of the layer corresponding to the distance of separation between two pseudo-mirror planes. We noted that atoms O_{1}, C_{1}, and C_{4} roughly define a pseudo-mirror plane; that is, atoms $\mathrm{C}_{2}, \mathrm{C}_{3}$, and O_{3} mirror into atoms $\mathrm{O}_{5}, \mathrm{C}_{5}$, and C_{6} while atoms $\mathrm{O}_{1}, \mathrm{C}_{1}$, and C_{4} mirror into themselves and atoms O_{2} and O_{6} have no correspondents.

One of our early three-dimensional Fourier maps revealed an unusually large peak near G_{2} which led us to question the accuracy of the original potassium analysis. A subsequent series of accurate analytical determinations for potassium indicated that there were 3.08 K^{+}per unit cell. The Fourier maps showed that they must be distributed statistically into the four symmetry equivalent positions. The combined interpretation of the available evidence yielded a set of atomic parameters which was refined to the final results.

Refinement of the Structure

(i) Refinement of Rigid-Body Parameters. Rigidbody least squares was used successfully during the ($h k 0$) refinement of the angular orientation of the trial model about the z-axis. Several additional calculations were made to determine the convergence range of the method. The hexagonal nature of the trial model limited the possible range to 60°. The convergence range was not symmetric about the minimum; it extended to 25° on one side but to only 11° on the other, giving a total convergence range of 36°.
(ii) Refinement of Individual Atom Parameters. The starting set of atomic parameters was refined through use of 20 cycles of SFLS. The first five cycles were run using only the 627 most intense reflections with unit weighing. Further refinement used all of the three-dimensional data and counter statistical weights. The identification and locations of additional water peaks $W_{K}, W_{5}, W_{6}, W_{7}$, and Ac^{-}were obtained from Fourier maps computed at various stages during the refinement.

Several of these interstitial atomic positions were refined with variable population parameters. The potassium position is a case of joint statistical occupancy (discussed more fully later). The scattering power of this position was represented by f-curve for K^{+}with a variable population parameter.

Anisotropic temperature parameter refinement was started with the 15 th cycle. Positions for the 21 hydro-
table 1
the final atomic parameters ano their stanoaro oeviations EXCEPT FOR THE 1 SOTROPIC TEMPERATURE FACTORS, ALL PARAMETER
VALUES HAVE BEEN MULTIPLIEO BY $1 O^{* *} 4$ THE AMISOTROPIC TEMP-

gen atoms attached to the carbon atoms of CHA were computed assuming tetrahedral bonding and a $\mathrm{C}-\mathrm{H}$ distance of $1.09 \AA$. Their structure factor contributions were included in the last two SFLS cycles. Refinement was terminated when the coordinate shifts were less than $1 / 4$ to $1 / 2$ the standard deviation of the parameters. The final discrepancy value was 0.10 for the observed reflections and 0.12 for all data.
table IV
OBSERVEO ANO CALCULATEO STRUGTRURE FACTORS
(THIS TABLE HAS BEEN PLACEO ON FILE WITH THE AMERICAN OOCUMENTATION INSTITUTE, LIBRARY OF CONGRESS, WASHINGTON

table V INTRAMOLECULAR OISTANCES								
ALL INTRMMOLECULAR OISTANCES WITHIN CYCLOHEXAAMYLOSE ANO WITHIN THE ACETATE ION WHICH ARE LESS THAN 3.0 ANGSTOMS ARE LISTEO. THE MEAN ESTIMATEO STANOARO OEVIATION FOR C-C 01 STANCES IS $S=0.013 \mathrm{~A}, C-0 \quad S=0.011 \mathrm{~A}, 0-0 \mathrm{~S}=0.010 \mathrm{~A}$ for oistances within the acetate ions = 0.3 A.								
ATOM	atom	0151	ATOM	atom	O1st	ATOM	ATOM	01st
GICI	G1C26166164615561026103610562446204	1.530		G605	2.353	$\mathrm{G3Cl}$	63C2	1.504
		2.517 2.909	6105	6106	2.831		63 CL	2.867
		2.422		G204	2.327		G3C5	2.376
		2.416					6302	2.391
		3.779	G2C1	G2C2	1.526		6305	1.439
		1.426		$62{ }^{6}$	2.470		64 CH	2.435
		2.450		624^{4}	2.869		6404	1.417
				G2C5	2.378			
				G202	2.418	63 C 2	63C3	1.541
G1C2		1.540		G205	1.417		63 C	2.491
	616361646165	2.4932.888		63 C 4	2.451		$63 \mathrm{C5}$	2.875
				6304	1.410		6302	1.412
	G165	2.888 1.443					6303	2.429
	6103	2.436	G2C2	G2C3	1.499		6305	2.409
	6105	$\begin{aligned} & 2.393 \\ & 2.352 \end{aligned}$		G2C4	2.498		6404	2.366
	6204			$62 C 5$	2.888			
			G202		1.435	63 C 3	$63 \mathrm{C4}$	1.509
GIC3	$61 C 4$ GIC5	$\begin{aligned} & 1.524 \\ & 2.513 \end{aligned}$		6203	2.417 2.397		$63 C 5$ 6302	
		2.513 2.464		6205	2.397 2.355		6302 6303	2.465 1.435
	6102 6103	2.464 1.433		6304	2.355			1.435
	6104	2.340	62C3	62C4	1.530	6363	6304	2.329
	6105	2.852		G2C5	2.520		6305	2.852
	6204	2.843		6202	2.435		6404	2.852
				G203	1.426			
6104	G1C56165			6204	2.377 2.842	$63 \mathrm{C4}$	6365	1.546
		2.519		G205	2.842 3.807		$63 \mathrm{C6}$	2.533
	6103 6103	2.400		6304	2.807		6303	2.387
	6104	1.411					6304	1.429
	6105	$\begin{aligned} & 2.434 \\ & 2.435 \end{aligned}$	62C4	G2C5	1.540		6305	2.420
	G6C 1			G266	2.498			
G165				6203	2.381	$63 C 5$	6366	1.533 2.410
	6104	2.397		G205	2.429		6304 6305	1.403
	6105	1.445					6306	2.411
	6106	2.423	G2C5	6266	1.541		6404	2.795
	G204	2.809		G204	2.414			
				6205	1.451	6366	6305	2.3521.379
GIC6	6104			6206 6304	2.413 2.745		6306	
	$\begin{aligned} & 6105 \\ & 6106 \end{aligned}$	$\begin{aligned} & 2.371 \\ & 1.425 \end{aligned}$		6304	2.745			
			G2C6	$\begin{aligned} & G 205 \\ & 6206 \end{aligned}$	$\begin{aligned} & 2.366 \\ & 1.391 \end{aligned}$	6302		$\begin{aligned} & 2.918 \\ & 2.863 \\ & 2.795 \end{aligned}$
6102	G103 G203 G204	2.219					6404	
		2.764	G202	6203	2.931	6303	6304	2.819
				6303	2.853		6306	2.731
G103	$6104$$6602$	2.808		6304	2.784			
		2.863	G203		2.824	6305	G306	$\begin{aligned} & 2.786 \\ & 2.353 \end{aligned}$
6104	G6C1 G6C2 G6C3 G6C5 G602			6204			G404	
		$\underline{2.467}$			2.717			
		2.852	G205	6206	2.782	AC-01	AC-C	1.36
		2.795		6304	2.342	$A C=02$	$A C-C$	1.39
		2.795				$A C-C$	AC-ME	1.97

table vi
the mean estimateo stanoaro oeviation for the valence angles IS $S=0.8$ OEGREES. * OENOTES AN ATOM IN AN AOJACENT glucose resioue.

ANGLE	G1	62	63	Angle	G1	62	63
$01 C 1 C 2$	106.8	105.6	108.1	${ }^{\text {C3C404 }}$	105.7	106.1	104.8
016105	111.0	111.9	110.9	C3C4C5	109.9	110.4	10.3
C2C105	108.0	109.0	109.8	$04 \mathrm{C4C5}$	108.2	108.1	108.4
C1C202	108.7	109.5	110.1	C4C505	108.9	108.6	110.2
$C_{1} 1 \mathrm{C2C3}$	110.1	109.5	109.1	C4C5C6	111.3	108.4	110.7
02 C 263	111.4	112.2	113.1	$05 \mathrm{C5C6}$	107.0	104.5	106.4
C2C303	110.1	111.4	109.4	C505C1	115.0	112.0	113.4
	108.9	11.1	109.5	${ }_{\text {C5C506 }}$	111.6	110.6	111.7
$03 \mathrm{C3C4}$	108.5	107.2	108	c101C4*			

Table vil
CONFORMATION ANGLES FOR THE GLUCOSE RESIOUES
FOR THE ATOMS C4C5C606 THE CONFORMATION ANGLE OF THE OIRECTED OONO C5 TO C6 IS OEFINEO AS THE ANGLE, MEASURE COUNTER-
LOCKWISE, THAT THE PROJECTION OF THE: BOND C5 TO C4 MAKES CLOCXWISE THAT THE PROJECTION OF THE BOND C5 TO C4 MAKES
RELATIVE YO THE PROJECTION OF THE BONO C6 TO OG WHEN ONE LOOKS
IN THE OIRECTION OF THE BONO C5 TO C6. $~ O E N O T E S ~ A I I ~ A T O M ~ I N ~$ IN THE OIRECTION OF THE BONO
AN AOJACENT GLUCOSE RESIOUE,

ANGLE	61	G2	G3	ANGLE	61	G2	G3
$05 \mathrm{Cl} 1 \mathrm{C2C3}$	58.4	59.9	58.6	$01 \mathrm{C1C202}$	61.2	62.2	62.1
C1C2C3C4	-57.3	-53.8	-55.9	02 C 2 C 303	63.3	64.9	62.6
C2C3C4C5	55.6	51.9	53.6	$03 \mathrm{C3C404}$	-68.1	-69.3	-71.0
C3C4C505	-55.8	-54.4	-55.2	$04 \mathrm{C4C5C6}$	71.4	77.0	73.2
C4C505C1	60.8	63.0	59.8				
C505C1C2	-61.9	-65.8	-62.6	02C2C105	179.4	-176.8	-176.7
$0363 C 4 C 5$ $6364 C 506$ C4C5C606	$\begin{array}{r} 175.3 \\ -173.6 \end{array}$	$\begin{array}{r} 173.9 \\ -167.4 \\ -178.7 \end{array}$	$\begin{array}{r} 172.8 \\ -172.7 \\ -178.6 \end{array}$	02C2C3*03	*-9.0	-7.6	-4.4

The final nonhydrogen coordinates and temperature parameters are listed in Table I. The assumed hydrogen atom coordinates are given in Table II. The population parameters which were refined or having values other than unity are in Table III. The struc-ture-factor list is in Table IV (on file with the American Documentation Institute, Library of Congress, Washington 25, D. C.).

Figure 2. The conformation of the glucose residue. The mean values of the bond distances and valence angles for the glucose residue are illustrated.

Discussion of Results

(i) Accuracy of Refinement. The parameters for CHA, $\mathrm{G}_{1} \mathrm{~W}, \mathrm{~K}^{+}$, and $\mathrm{G}_{3} \mathrm{~W}$, which form the rigid framework of the crystal, have been determined to about 0.01 \AA. accuracy. (The naming of the atoms is explained in Figure 4.) This crystal framework is permeated by continuous channels and cavities analogous to the zeolite structures in which SiO_{4} and AlO_{4} tetrahedra form molecular sieves. The water molecules, K^{+}, and Ac^{-} are poorly ordered and loosely accommodated into the relatively large cavities and channels, which precludes an accurate determination of their position. The framework atoms are all very well resolved in electron density sections as indicated by peak shapes and numbers of contours. The peaks for atoms W_{K} and W_{5} are more diffuse. Only approximate positions and orientations are known for the intrachannel Ac^{-} and water molecules which are very poorly resolved in the electron density maps. Some additional acetate is inferred to be present only by the requirement of charge balance, indicating that it may have appreciable mobility within its intracrystalline cage.
(ii) The Bond Distances and Angles. The intramolecular distances and valence angles are listed in Tables V and VI. These values have not been corrected for the effect of thermal librations.

The mean bond distance and angle values for the glucose residue are shown in Figure 2. The average $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances are 1.528 ± 0.013 and 1.426 $\pm 0.011 \AA$. The average $\mathrm{C}_{1}-\mathrm{O}$ bond length is $1.418 \AA$. The average over the other $\mathrm{C}-\mathrm{O}$ bonds (except $\mathrm{C}_{6}-\mathrm{O}_{6}$) is $1.431 \AA$. However, this slight difference is near the limit of accuracy for this determination. The lengths of the $\mathrm{C}_{6}-\mathrm{O}_{6}$ bonds are most affected by thermal motion which accounts for their shortening.

The large shortening of the corresponding $\mathrm{C}_{1}-\mathrm{O}$ bonds reported for cellobiose by Jacobson, Wunderlich, and Lipscomb ${ }^{24}$ or for β-arabinose by Hordvik ${ }^{25}$ was not observed. Brown and Levy, ${ }^{26}$ however, did find a slight but significant shortening of the anomeric $\mathrm{C}_{1}-\mathrm{O}_{1}$ bond in α-D-glucose.

The carbon valence angles inside CHA range from 106 to 112°. The mean oxygen valence angles in the

[^4]ether linkages are: $\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{C}_{4}$ (glucosidic linkage), $119.1^{\circ} ; \mathrm{C}_{1}-\mathrm{O}_{5}-\mathrm{C}_{5}, 113.5^{\circ}$.
(iii) The Conformation of the Glucose Residue. The α-D-glucose units are all in the pyranose staggered chair form with the Cl conformation (la2e3e4e5e) as shown in Figure 4. Atoms $\mathrm{O}_{2}, \mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{O}_{5}$ and $\mathrm{O}_{3}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{O}_{6}$ form two approximately parallel planes. The deviations from these planes average less than 0.02 and $0.06 \AA$. , respectively. The tendency for minimum overlaps of nonbonded atoms is clearly evident in the figure.

The six conformation angles of the ring alternate in sign and fall within the range of magnitudes 52 to 66°. Table VII lists the observed conformation angles in each glucose residue. The range is wider than found in cellobiose. The corresponding values in the three glucose units follow the same pattern. The divergence of the conformation angles is probably due to the combination of the effect of the intraring $\mathrm{C}-\mathrm{O}$ bonds being shorter than the $\mathrm{C}-\mathrm{C}$ bonds and to the induced strain from the macro-ring structure of CHA.

The orientation of the $\mathrm{C}_{6}-\mathrm{O}_{6}$ bond can be defined by the $\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{O}_{6}$ conformation angle. A comparison of this angle as it occurs in different structures containing the glucose residue indicated there are at least two preferred orientations in the crystalline state. The $180 \pm 12^{\circ}$ orientation is found in all of the glucose residues in both CHA and cellobiose ${ }^{24}$ while the -60 $\pm 2^{\circ}$ orientation (O_{6} staggered between atom O_{5} and C_{4}) is found in the α-D-glucosamine hydrogen halides ${ }^{27}$ and in sucrose. ${ }^{28}$ The determining factor between these two orientations must certainly be the intermolecular hydrogen-bonding schemes within the crystals.
(iv) The Geometry of the α-Glucosidic Linkage. CHA is the first molecule studied which contains the α-(1,4)-glucosidic linkage as found in starch. The principal geometric feature of this linkage is the formation of a hydrogen bond ($2.852 \AA$.) between atoms O_{2} and O_{3} of each pair of contiguous glucose residues. Another feature is the large valence angle (119.1°) for the linkage oxygen.
(v) The Analysis of the Rigid-Body Thermal Motion. The r.m.s. amplitudes along the principal directions of the anisotropic thermal motion for each atom are given in Table VIII. The analysis of the thermal motion of the atoms in terms of rigid-body motion ${ }^{28}$ reveals the translational vibrations arise from the motion of the whole CHA molecule, while the largest rotational vibrations arise from the libration of the glucose residues about the $\mathrm{O}_{1}-\mathrm{O}_{4}$ axes.

The translational vibration tensors and the direction cosines of the principal translational directions are given in Table IX. The motion of all three glucose units coincides in magnitude and direction with the motion of CHA. The directions of motion are approximately parallel to the inertia axes of CHA which are nearly parallel to the cell axes. The largest displacement are along the y-axis.

In order to calculate the rotational vibration, the CHA molecule was treated as an ellipsoid of revolution because it has two nearly equal principal moments of inertia. Little of the thermal motion can be attributed
(27) G. A. Jeffrey and S. C. Chu, private communication, 1964.
(28) D. W. J. Cruickshank, Acta Cryst., 9, 754 (1956).
table vili

analysis of atom anisotropic thermal motion								
THE R.M.S. AMPLITUOES (ANGStROM UNITS TIME $10 * * 3$) along the PRINCIPAL OIRECTIONS, OF THE ANISOTROPIC THERMAL MOTION ANO THE OIRECTION COSINES (TIMES $10^{* *} 3$) OF THE PRINCIPAL axes relative to the orthogonalizeo cell axes								
ATOM	RMS	OCX	OCY OCZ	Atom	RMS	Ocx	OCY	OCL
Gicl	$\begin{array}{ll}1 & 170 \\ 2 & 177\end{array}$	$\begin{array}{r} 802 \\ 491 \\ -341 \end{array}$	$\begin{array}{rr} 314 & -508 \\ 138 & 860 \\ 939 & 43 \end{array}$	G206	$\begin{array}{ll} 1 & 207 \\ 2 & 277 \\ 3 & 324 \end{array}$	$\begin{array}{r} 34 \\ -499 \\ -866 \end{array}$	88	396 -55 -71
G1C2	$\begin{array}{ll} 1 & 162 \\ 2 & 189 \\ 3 & 208 \end{array}$	$\begin{array}{r} 954 \\ -283 \\ -97 \end{array}$	$\begin{array}{rr} 184 & 236 \\ 301 & 911 \\ 936 & -339 \end{array}$	63 Cl	$\begin{array}{ll} 1 & 150 \\ 2 & 213 \\ 3 & 233 \end{array}$		$\begin{array}{r} -855 \\ 370 \end{array}$	$\begin{array}{r} 123 \\ 438 \\ 891 \end{array}$
6163	$\begin{array}{ll} 1 & 146 \\ 2 & 171 \\ 3 & 223 \end{array}$	$\begin{array}{r} -485 \\ -873 \\ -49 \end{array}$	$\begin{array}{rr} -14962 \\ 27 & 887 \\ 989 & 143 \end{array}$	$63 C 2$	$\begin{array}{ll} 1 & 171 \\ 2 & 192 \\ 3 & 239 \end{array}$		$\begin{array}{r} -447 \\ -417 \\ 792 \end{array}$	365 723 586
6104	$\begin{array}{ll} 1 & 153 \\ 2 & 172 \\ 3 & 209 \end{array}$		$\begin{array}{rr} -155 & 83 \\ 226 & 973 \\ 962 & -215 \end{array}$	$63 \mathrm{C3}$	$\begin{array}{ll} 1 & 151 \\ 2 & 160 \\ 3 & 223 \end{array}$		$\begin{array}{r} 167 \\ 53 \\ 984 \end{array}$	973 149 174
GIC5	$\begin{array}{ll} 1 & 136 \\ 2 & 180 \\ 3 & 246 \end{array}$	$\begin{array}{r} 797 \\ 604 \\ -2 \end{array}$	$\begin{array}{rrr}-48 & -602 \\ 66 & 794 \\ 997 & -82\end{array}$	$63 \mathrm{C4}$	$\begin{array}{ll} 1 & 133 \\ 2 & 147 \\ 3 & 226 \end{array}$	$\begin{array}{r} 802 \\ -592 \\ 79 \end{array}$	$\begin{array}{r} -116 \\ -25 \\ 993 \end{array}$	585 806 89
G106	$\begin{array}{ll} 1 & 153 \\ 2 & 175 \\ 3 & 317 \end{array}$	$\begin{array}{r} -525 \\ -824 \\ 212 \end{array}$	$\begin{array}{rrr}43 & 850 \\ 223 & -521 \\ 974 & 82\end{array}$	6365	$\begin{array}{ll} 1 & 140 \\ 2 & 194 \\ 3 & 231 \end{array}$		$\begin{array}{r} 202 \\ -254 \\ -946 \end{array}$	$\begin{array}{rl} 2 & 977 \\ 4 & -14 \\ 6 & -212 \end{array}$
6102	$\begin{array}{ll} 1 & 166 \\ 2 & 211 \\ 3 & 242 \end{array}$	$\begin{array}{r} 684 \\ -718 \\ 130 \end{array}$	$\begin{array}{ll} 246 & 686 \\ 395 & 574 \\ 885 & -447 \end{array}$	63 c6	$\begin{array}{ll} 1 & 164 \\ 2 & 231 \\ 3 & 290 \end{array}$		$\begin{array}{r} 103 \\ -426 \\ -899 \end{array}$	$\begin{array}{rl} 3 & 941 \\ 6 & -252 \\ 9 & -2227 \end{array}$
6103	$\begin{array}{ll} 1 & 158 \\ 2 & 195 \\ 3 & 284 \end{array}$	$\begin{array}{r} -641 \\ -739 \\ 206 \end{array}$	$\begin{array}{lr}399 & 655 \\ -92 & -667 \\ 912 & -354\end{array}$	6302	$\begin{array}{ll} 1 & 174 \\ 2 & 201 \\ 3 & 287 \end{array}$		-457 -191 868	848 201 491
6104	$\begin{array}{ll} 1 & 151 \\ 2 & 177 \\ 3 & 197 \end{array}$		$\begin{array}{rr} 84 & -385 \\ -510 & 776 \\ 856 & 499 \end{array}$	6303	$\begin{array}{ll} 1 & 165 \\ 2 & 188 \\ 3 & 266 \end{array}$		$\begin{array}{r} -118 \\ -32 \\ 993 \end{array}$	890 440 120
6105	$\begin{array}{ll} 1 & 148 \\ 2 & 181 \\ 3 & 243 \end{array}$	$\begin{array}{r} -527 \\ -850 \\ \quad 12 \end{array}$	$\begin{array}{rrr}-290 & 799 \\ 193 & -491 \\ 937 & 348\end{array}$	6304	$\begin{array}{ll} 1 & 142 \\ 2 & 171 \\ 3 & 200 \end{array}$	406	$\begin{aligned} & -40 \\ & -31 \\ & 999 \end{aligned}$	-407 913 12
G106	$\begin{array}{ll} 1 & 175 \\ 2 & 249 \\ 3 & 400 \end{array}$	$\begin{array}{r} -165 \\ -945 \\ 282 \end{array}$	$\begin{array}{rrr}35 & 986 \\ 281 & -168 \\ 959 & 14\end{array}$	6305	$\begin{array}{ll} 1 & 145 \\ 2 & 195 \\ 3 & 232 \end{array}$	$\begin{aligned} & -279 \\ & -937 \\ & -211 \end{aligned}$	$\begin{aligned} & 252 \\ & 961 \end{aligned}$	$\begin{array}{rl} 8 & 953 \\ 2 & 243 \\ 1 & 243 \\ 1 & 180 \end{array}$
G2C1	$\begin{array}{ll} 1 & 160 \\ 2 & 175 \\ 3 & 226 \end{array}$	$\begin{array}{r} 844 \\ -536 \\ 17 \end{array}$	$\begin{array}{rr} -253 & 473 \\ -369 & 759 \\ 894 & 447 \end{array}$	6306	$\begin{array}{ll} t & 188 \\ 2 & 255 \\ 3 & 382 \end{array}$		$\begin{array}{r} 77 \\ -429 \\ 900 \end{array}$	997 54 -59
G2C2	$\begin{array}{ll} 1 & 145 \\ 2 & 196 \\ 3 & 223 \end{array}$	$\begin{array}{r} 572 \\ -820 \\ 25 \end{array}$	$\begin{array}{rrr}-236 & 785 \\ -136 & 557 \\ 962 & 271\end{array}$	G16	$\begin{array}{ll} 1 & 212 \\ 2 & 253 \\ 3 & 382 \end{array}$		$\begin{aligned} & 442 \\ & 645 \\ & 624 \end{aligned}$	740 -655 153
$62 C 3$	$\begin{array}{ll}1 & 157 \\ 2 & 167 \\ 3 & 216\end{array}$	$\begin{array}{r} 262 \\ -930 \\ -256 \end{array}$	$\begin{array}{rr} 80 & 962 \\ -244 & 273 \\ 967 & -10 \end{array}$	G3W	$\begin{array}{ll} 1 & 218 \\ 2 & 251 \\ 3 & 354 \end{array}$		-839	859 -489 -153
G2C	$\begin{array}{ll} 1 & 133 \\ 2 & 161 \\ 3 & 214 \end{array}$		$\begin{array}{lr}-63 & -394 \\ 25 & 918 \\ 998 & -48\end{array}$	K+	$\begin{array}{ll} 1 & 238 \\ 2 & 264 \\ 3 & 291 \end{array}$		$\begin{array}{r} 236 \\ -196 \\ 922 \end{array}$	$\begin{array}{r} 940 \\ 138 \\ -311 \end{array}$
G2C5	$\begin{array}{ll}1 & 127 \\ 2 & 161 \\ 3 & 244\end{array}$	$\begin{array}{r} -351 \\ -820 \\ 451 \end{array}$	$\begin{array}{rrr}13 & 936 \\ 478 & -314 \\ 879 & 157\end{array}$	wK	$\begin{array}{ll}1 & 305 \\ 2 & 451 \\ 3 & 709\end{array}$		986 60 156	146 756 638
G266	$\begin{array}{ll} 1 & 143 \\ 2 & 219 \\ 3 & 306 \end{array}$	$\begin{array}{r} 81 \\ -667 \\ 741 \end{array}$	$\begin{array}{rr} -135 & 988 \\ 729 & 154 \\ 671 & 31 \end{array}$	W5	$\begin{array}{ll} 1 & 314 \\ 2 & 459 \\ 3 & 707 \end{array}$		807 -586 67	-526 -564 532
G202	$\begin{array}{ll} 1 & 158 \\ 2 & 223 \\ 3 & 246 \end{array}$	$\begin{array}{r} 441 \\ -675 \\ -591 \end{array}$	$\begin{array}{rl} -229 & 868 \\ -722 & 152 \\ -753 & 473 \end{array}$		$\begin{array}{ll} 1 & 228 \\ 2 & 332 \\ 3 & 494 \end{array}$		$\begin{array}{r} -237 \\ -972 \\ 0 \end{array}$	$\begin{array}{lr} 7 & 0 \\ 2 & 0 \\ \hline & 1000 \end{array}$
6203	$\begin{array}{ll}1 & 165 \\ 2 & 224 \\ 3 & 241\end{array}$	311 -876 370	$\begin{array}{rrr}117 & 943 \\ 421 & 236 \\ 899 & -233\end{array}$		$\begin{array}{ll}1 & 272 \\ 2 & 358 \\ 3 & 496\end{array}$		-565 -18 825	-412 872 -263
6204	$\begin{array}{ll} 1 & 142 \\ 2 & 174 \\ 3 & 197 \end{array}$		$\begin{array}{rr} -35 & -286 \\ -706 \\ 707 & 670 \end{array}$	$A C-02$	$\begin{array}{ll} 1 & 271 \\ 2 & 304 \\ 3 & 457 \end{array}$		-72 -149 986	$\begin{array}{rr} 2 & -218 \\ 9 & 967 \\ 6 & 131 \end{array}$
G205	$\begin{array}{ll} 1 & 173 \\ 2 & 191 \\ 3 & 240 \end{array}$	$\begin{array}{r} -646 \\ -595 \\ 477 \end{array}$	$\begin{array}{rr} 47 & 762 \\ 593 & -542 \\ 804 & 355 \end{array}$					
			table	E $1 x$				
		an	Ationa	bratio	On tens			
the olrection cosines of the principal axes of t are relativ TO THE ORTHOGONALIZEO CELL AXES. R.M.S. VALUES ARE IN ANGSTOM UNITS.								
T*10**-2 A**2				MS	Ocx	OCY		OCZ
G1	2.50	-0.03 4.30	$\begin{array}{r} 0.40) \\ -0.02) \\ 1.93 \end{array}$	$\begin{aligned} & 0.13 \\ & 0.16 \\ & 0.21 \end{aligned}$	$\begin{aligned} & -0.455 \\ & -0.890 \\ & -0.019 \end{aligned}$	$\begin{array}{r} 0.003 \\ -0.022 \\ 0.999 \end{array}$		$\begin{array}{r} 0.891 \\ -0.455 \\ -0.013 \end{array}$
62	(2.85	0.35 4.54	$\left.\begin{array}{cc}-0.08) \\ 0.14 \\ 1.89\end{array}\right)$	0.14 0.17 0.21	$\begin{array}{r} 0.109 \\ -0.975 \\ 0.194 \end{array}$	$\begin{array}{r} -0.067 \\ 0.188 \\ 0.980 \end{array}$		$\begin{aligned} & 0.992 \\ & 0.120 \\ & 0.045 \end{aligned}$
63	(2.56	0.30 4.29	$\begin{array}{rr}0.08) & 0 \\ -0.05) \\ 1.87) & 0 \\ 0\end{array}$	$\begin{aligned} & 0.14 \\ & 0.16 \\ & 0.21 \end{aligned}$	$\begin{array}{r} -0.132 \\ -0.977 \\ 0.166 \end{array}$	$\begin{aligned} & 0.035 \\ & 0.163 \\ & 0.985 \end{aligned}$		$\begin{array}{r} 0.991 \\ 0.936 \\ -0.013 \end{array}$
CHA	(4.14	0.23 6.56	0 0 $2.53)$	$\begin{aligned} & 0.16 \\ & 0.20 \\ & 0.26 \end{aligned}$	$\begin{array}{r} 0 \\ -0.996 \\ 0.092 \end{array}$	$\begin{gathered} 0 \\ 0.092 \\ 0.996 \end{gathered}$		$\begin{gathered} 1.000 \\ 0 \\ 0 \end{gathered}$

to the rigid-body rotational vibration of CHA. However, as Tables X and XI indicate, the individual glucose residues can be treated as rigid-body units to explain the thermal motion of atoms. In each case the largest libration (r.m.s. amplitude approximately 4.5°) is about the $\mathrm{O}_{1}-\mathrm{O}_{4}$ line.

In solving for the magnitudes of libration of the CHA molecule and the individual glucose units, negative minimum eigenvalues were encountered. These nega-
table X
direction cosines of the oi to 04 lines

	OCX	ocy	ocz
G1	-0.948	0.320	0.005
G2	-0.196	0.981	-0.003
G3	0.779	0.628	-0.003

table $\times 1$
the rotational vibration tensors
THE ORRECTION COSINES OF THE OMEGA TENSOR ARE RELATIVE TO
THE ORTHOGONALIZEO GELL AXES. THE ORIGIN OF THE OMEGA LIBRATIONS FOR EACH GLUCOSES RESIOUE WAS ASSUMEO TO BE THE MIO-POINT OF THE O1-O4 LINES. R.M.S. VALUES ARE IN OEGREES ANO THOSE ENCLOSEO IN () OENO
WHICH WERE REPLACEO BY ZERO.

	OMEGA*OEG**2			RMS	Ocx	OCY	062
61	$\left\{^{22.73}\right.$	$\begin{array}{r} -4.32 \\ 7.92 \end{array}$	$\begin{array}{r} 2.36 \\ -2.18 \\ -2.47 \end{array}$	$\begin{gathered} (0.00) \\ 2.56 \\ 4.92 \end{gathered}$	$\begin{array}{r} -0.056 \\ 0.286 \\ 0.957 \end{array}$	$\begin{array}{r} 0.236 \\ 0.935 \\ -0.268 \end{array}$	$\begin{array}{r} 0.970 \\ -0.211 \\ 0.107 \end{array}$
G2	(8.54	-1.99 15.15	$\left.\begin{array}{l} -1.22 \\ -1.01 \\ -3.31 \end{array}\right\}$	$\begin{gathered} (0.00) \\ 2.86 \\ 3.97 \end{gathered}$	$\begin{array}{r} 0.160 \\ -0.952 \\ -0.261 \end{array}$	$\begin{array}{r} 0.087 \\ -0.251 \\ 0.965 \end{array}$	$\begin{array}{r} 0.983 \\ 0.177 \\ -0.034 \end{array}$
G3	$\left\{^{18.18}\right.$	5.91 11.30	$\begin{array}{r} -1.26) \\ -0.21 \\ 0.25 \end{array}$	$\begin{aligned} & 0.39 \\ & 2.82 \\ & 4.65 \end{aligned}$	$\begin{array}{r} 0.077 \\ -0.493 \\ 0.867 \end{array}$	$\begin{array}{r} -0.022 \\ 0.868 \\ 0.496 \end{array}$	$\begin{array}{r} 0.997 \\ 0.058 \\ -0.056 \end{array}$
CHA	(1.49	1. 09	$\left.\begin{array}{r} 0 \\ 0 \\ -1.49 \end{array}\right\}$	$\begin{gathered} (0.00) \\ 1.22 \\ 1.22 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 1.000 \end{gathered}$	$\begin{gathered} 0 \\ 1.000 \\ 0 \end{gathered}$	

Intermolecular oistances										
all intermolecular oistances less than 3.5 angstoms ano THEIR EST IMATEO STANDARO OEVIATIONS, S, ARE LISTEO. ATOM I (COOROINATES XYZ) IS ONE OF THE ATOMS IN THE BASIC SET NS $=1$ ATOM 2 (COOROINATES UVW) IS A SYMMETRY RELATEO ATOM. NS REFERS TO ONE OF THE FOLLOWING SYMMETRY TRANSFORMATIONS.										
ATOM	NS	ATOM	$015 T$	S	ATOM	NS	ATOM	0151		
GICl	6	6303	3.499	. 010	GIW	162056366		3.48	. 011	
								. 015		
G1C3	4	6106	3.458	. 012		1			2.675	. 011
						7	6105	2.821	. 011	
G1c6	2	AC-02	3.37	. 03		7	6106 6102	3.212 2.784	. 014	
6102		G1w	3.4642.784	$.011$		$\begin{aligned} & 1 \\ & 5 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & K_{+} \\ & 6305 \\ & 6306 \\ & 6302 \end{aligned}$$630$. 010	
					G3W					
6103	4	$\begin{aligned} & 6106 \\ & W 5 \end{aligned}$	$\begin{aligned} & 2.720 \\ & 3.06 \end{aligned}$	$.012$				2.882 3.251	. 015	
								2.792	. 012	
6105	5	G1W	2.821	. 011	K+	1	62C6	3.387	. 011	
							6205	2.848	. 007	
6106	23335	AC-01	2.83	. 04		1	G206	2.934	. 010	
		$\begin{aligned} & A C=02 \\ & 6163 \\ & 6102 \\ & 6103 \\ & 61 W^{\prime} \end{aligned}$	2.853.458	. 03		1	G1W	2.677	. 011	
						1	G3W	2.725	. 010	
			3.458 3.464	. 012		1	WK	2.934	. 023	
			2.720	. 01012		,	G202	2.741	. 007	
	5									
G2C3	4	G206	3.430	. 013	WK	1	K+	2.934	. 025	
						3	W5	2.89		
G2C6	1	${ }_{A+}^{K_{+}}$	$\begin{aligned} & 3.387 \\ & 3.41 \end{aligned}$	$.011$. 04	
					W5	4689	WK 6302 G103 W5	2.89		
G202	4	$\mathrm{G}_{\mathrm{K}_{+}}^{206}$	3.3322.741	$.012$				3.36 3.06	. 022	
								3.040	. 04	
G203	4	6206	2.717	. 012	W6	1	$A C-01$	3.24	. 06	
G205	1	$\begin{aligned} & \text { G1W } \\ & \mathbf{N}^{\prime W} \end{aligned}$	$\begin{aligned} & 3.493 \\ & 2.848 \end{aligned}$			1	$A C-02$ $A C-C$	3.39 3.88	. 06	
				$.011$		1	AC-ME	3.31	.10	
						1	W7	3.02	. 07	
G206	11333	K+ $A C-01$ AC-ME G2C3 G202 G203	$\begin{aligned} & 2.934 \\ & 2.94 \\ & 3.95 \\ & 3.430 \\ & 3.332 \\ & 2.717 \end{aligned}$	$\begin{aligned} & .010 \\ & .03 \\ & .07 \\ & .013 \\ & .012 \\ & .012 \end{aligned}$		1444		3.02	. 07	
					W7		W6 $A C-01$ AC-02 AC-C			
								2.86	. 05	
								2.74	. 05	
								2.54	. 06	
					AC-01	$\begin{array}{ll} 1 & 6106 \\ 1 & 62 C 6 \\ 1 & 6206 \\ 1 & W 6 \\ 3 & W 7 \end{array}$		2.82	. 04	
6363	4	6306	3.451	. 012				3.41	. 04	
G3C6	1	G1W	3.481	. 015				$\frac{2.94}{3.24}$. 06	
								2.86	. 05	
6302	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 6306 \\ & 634 \\ & W 5 \end{aligned}$	$\begin{aligned} & 3.406 \\ & 2.792 \\ & 3.358 \end{aligned}$	$\begin{array}{r} .013 \\ .012 \end{array}$				2.70	. 03	
					AC-02	1	6306			
						1	$64 \mathrm{C6}$ 6406	3.37 2.85	. 03	
6303	4	G306 GICI	$\begin{aligned} & 2.731 \\ & 3.499 \end{aligned}$	$\begin{aligned} & .011 \\ & .010 \end{aligned}$			W6	$\begin{aligned} & 2.03 \\ & 3.39 \end{aligned}$.06	
						3	W	2.74		
6305	7	63W	2.882	. 011	AC-C	3	W6	2.88	. 08	
							W7	2.54	. 06	
G306	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 3 \\ & 3 \\ & 7 \end{aligned}$	$A C-02$ $A C-M E$ G3C3 6302 G3W	$\begin{aligned} & 2.70 \\ & 2.93 \\ & 3.451 \\ & 3.406 \\ & 2.731 \\ & 3.251 \end{aligned}$	$\begin{aligned} & .03 \\ & .07 \\ & .012 \\ & .013 \\ & .011 \\ & .015 \end{aligned}$		1		$\begin{aligned} & 3.15 \\ & 2.93 \\ & 3.31 \end{aligned}$	$\begin{aligned} & .07 \\ & .07 \end{aligned}$	
					AC-ME		$\begin{aligned} & 6206 \\ & 6306 \\ & W 6 \end{aligned}$			

tive eigenvalues were set to zero, since their magnitude has no physical meaning. We interpreted this situation as indicating a small libration relative to the other eigenvalues. We feel that our results reflect correctly the relative relationship of the rotational vibrations, although the absolute values are subject to systematic error.
(vi) The Packing of the Molecules. The CHA molecules form rigid channel structures which are stacked

Figure 3. The projection of the cyclohexaamylose-potassium acetate complex onto (001). A possible configuration for the disorder of the acetate ions is shown.

Figure 4. The projection of the cyclohexaamylose-potassium acetate structure onto a concentric cylinder, viewed from the inside. The axis of the cylinder is coincident with the twofold axis. The glucose units are named G_{1}, G_{2}, and G_{3}. The naming of the atoms within each glucose, as shown in the upper left, is in accordance with the usual convention used by carbohydrate chemists. The linkage oxygen atom between G_{1} and G_{2} can be referred to as $\mathrm{G}_{1} \mathrm{O}_{1}$ or $\mathrm{G}_{2} \mathrm{O}_{4}$ depending on the context of the discussion. Water molecules are denoted by W. $G_{1} W, G_{3} W$, and W_{K} refer to the water molecules associated with G_{1}, G_{3}, and K^{+}. A fourth water molecule competing statistically for the K^{+}position is called $\mathrm{G}_{2} \mathrm{~W}$. The other water molecules are not easily identified by an association with the various structural classes; hence, they are labeled W_{5}, W_{6}, and W_{7}. The atoms of the acetate group, not shown in this figure, are labeled $\mathrm{AcO}_{1}, \mathrm{AcO}_{2}, \mathrm{AcC}$, and AcMe , the latter referring to the methyl end of the molecule.
parallel in an open orthorhombic framework. Adjacent molecules along a channel are connected by six O_{3} to O_{6} hydrogen bonds. The water molecules $\mathrm{G}_{1} \mathrm{~W}$, $\mathrm{G}_{3} \mathrm{~W}$, and $\mathrm{G}_{2} \mathrm{~W}$ along with K^{+}link atoms O_{5} and O_{2} in the adjacent CHA molecules and contribute to the stability of the channel structure (see Figure 4 and Table XII). These atoms also cooperate to connect adjacent channels to form the framework of the crystal. Each carbohydrate channel is cross linked to four adjacent inverted channels and each K^{+}is coordinated to three channels. Figures 3, 4, and 5 illustrate these interconnections. A distorted octahedral coordination

Figure 5. The projection of cyclohexaamylose onto (001).
about K^{+}consists of atoms $\mathrm{G}_{2} \mathrm{O}_{5}, \mathrm{G}_{2} \mathrm{O}_{6}$, and $\mathrm{G}_{2} \mathrm{O}_{2}$ from one channel, atoms $G_{1} W$ and $G_{3} W$ from two adjacent channels, and atom W_{K}.

Atoms W_{K} and W_{j} fill the superfluous cavity between channels. Their lateral restrictions are at best very weak hydrogen bonds. They are attached to K^{+}in a pendulum-like fashion; W_{5} is loosely hydrogen bonded to W_{K} which is coordinated to K^{+}. This interchannel cavity is the most plausible location for the extra Ac^{-}. The anisotropic diffuseness of W_{K} and W_{5} would tend to support this idea. If present, Ac^{-}must contribute statistically to the scattering from this area and hence some of its scattering is probably included into the parameters of \mathbf{W}_{K} and \mathbf{W}_{5}. The occupancy factor for this ion is about 0.25 , which substantially reduces its scattering power. Any orientational disorder or mobility of the ion would further decrease the probability of observing its scattering.
(vii) Trouble in the Canal Zone. The disorder and the very large anisotropy of Ac^{-}and the water molecules located inside the CHA channels clearly indicate their pseudo-fluid nature. The intrachannel Ac^{-}anions are statistically disordered at the twofold special positions. The Ac^{-}molecular plane appears to be more or less perpendicular to the twofold axis. Each Ac^{-} is hydrogen bonded to four of the O_{6} hydroxyl groups on CHA.

The water molecule \mathbf{W}_{6} is located on the twofold axis near the center of the CHA torus and at a normal packing distance above Ac^{-}. Water molecule W_{7} is located near the level of the O_{2} and O_{3} hydroxyl groups on CHA, packed between W_{6} and $A c^{-}$in the next unit cell. It is disordered into positions off the twofold axis which are within hydrogen-bonding range of the acetate oxygens.
(viii) The Case of Joint Occupancy. Careful quantitative analysis for K^{+}indicated that there are $3.08 \mathrm{~K}^{+}$ per unit cell. This implies that the crystal is nonstoichiometric in K^{+}in the sense that a general position requires four atoms per unit cell. The observed population parameter for the K^{+}position using $f_{\mathrm{K}^{+}}$is $0.885 \pm$ 0.007 . Since it is unreasonable that holes the size of

Figure 6. Projection of the proposed model for V-amylose along the helix axis.
K^{+}ions would exist in the crystal, we expect that the remaining portion of this position is occupied by water ($\mathrm{G}_{2} \mathrm{~W}$) which is hydrogen bonded to two CHA molecules in the same manner as $G_{1} W$ and $G_{3} W$. (The hydrogen bond distances and the coordination distances are both about $2.8 \AA$.) Based upon this assumption we calculate $3.17 \mathrm{~K}^{+}$per unit cell from the X-ray data.

Only one K^{+}per CHA is required as counterion for the Ac^{-}anion at the special position inside each CHA torus although there are two symmetry equivalent K^{+} sites on the outside. Any additional K^{+}incorporated in excess of one per CHA must depend on the accommodation of additional Ac^{-}somewhere else in the crystal framework. The crystal stability depends on the cross linking of adjacent CHA channels through the octahedral coordination about $\mathrm{K}^{+} . \quad \mathrm{G}_{2} \mathrm{~W}$ is not a stabilizing substitute in these cross linkages. Our analytical results, although not designed to test this point, seem to indicate that the ratio of K^{+}to CHA in the crystals is relatively invariant to the amount of excess KAc in solution. Thus it seems that at least $3 \mathrm{~K}^{+}$per cell are needed for crystal formation but not much more is incorporated owing, in all probability, to the difficulty of accommodating the additional Ac^{-}.
(ix) The Extrapolation to Amylose. A postulated structure for the helical form of amylose is shown in Figures 6 and 7. It is a single-threaded sinistral helix composed of six α-D-glucose units per turn all in the Cl conformation linked $\alpha-(1,4)$ with hydrogen bonds between atoms O_{2} and O_{3} of each pair of contiguous glucose residues. An equivalent drawing of the dextral helix indicates that it is probably a less satisfactory model for amylose. Its elimination, however, as a plausible model cannot be accomplished by so simple an argument; we think this could be done experimentally using the ($h k 0$) data from the butanolprecipitated amylose. The projections of the two helical models are different so they can be tested by structure factor calculations.

The $\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{O}_{6}$ conformation angle of 180° was used for the $\mathrm{C}_{6} \mathrm{O}_{6}$ bond orientation illustrated in Figures 6 and 7. The $+60^{\circ}$ orientation was also considered but appears to increase the packing diameter too much and is less favorable for the interstitial inclusion of water at the pocket sites along the helix. For both orientations of the $\mathrm{C}_{6} \mathrm{O}_{6}$ bond a hydrogen bond can be formed between atoms O_{6} in one turn to atom O_{2} in the next turn. The interior of the helix is lined with the CH

Figure 7. A view of the proposed model for helical V-amylose perpendicular to the helix axis.
groups of atoms C_{3} and C_{5} and by the glucosidic oxygen atoms. The glucose units probably librate with a r.m.s. amplitude of near 4.5° about their $\mathrm{O}_{1} \mathrm{O}_{4}$ axes analogous to CHA. This suggests that helical amylose is more like a long flexible coiled spring than a rigid rod.

Zaslow and Miller ${ }^{29}$ have shown that the anhydrous form of V-amylose takes up one molecule of water per glucose at interstitial sites along the exterior of the helix at a vapor pressure of $24-26 \mathrm{~mm}$. By analogy to CHA, the pocket positions between the O_{5} in one turn and the O_{2} in the next are the probable locations of the water molecules. Their addition to the helical framework increases the packing diameter to $13.7 \AA .{ }^{10}$

The proposed model is like a cylindrical screw with a left-handed thread. It has an $8-\AA$. pitch with a lead angle of 17.5°. The major and minor diameters are 13.4 and $11 \AA$. The crest and root contours of the thread are irregular and the packing diameter is close to $13 \AA$.

The idealized packing of cylindrical screws is a hexagonal closest packing with interlocking of the crests and roots of the screw threads. The standard screw thread has a twofold axis normal to thread axis so that its head and tail are indistinguishable. At this point the amylose helix departs from the screw analogy because the reducing end is easily distinguishable from the nonreducing end. Rundle and Edwards ${ }^{30}$ found that alternate helices are directed oppositely for the monohydrated butanol-precipitated amylose. In addition, the irregularity of the contour along the crest of the thread suggests that a preferred rotational orientation can be expected.

Amylose exhibits several other crystalline forms. Senti and Witnauer, ${ }^{31-33}$ working with stretched fibers, have been able to effect an interconversion between these various forms. The explanation of concomitant

[^5]structural changes which occur during these transitions is an area open to conjecture; however, there is no reason to expect a change in conformation of the glucose residue.

Acknowledgments. We are very grateful to Professor D. French for suggesting the problem, providing samples of CHA, and discussing the chemistry of this series of carbohydrate compounds. We thank the editor and
referees whose comments on the first draft of this article were helpful in improving the presentation of the material. We are indebted to the Corn Industries Research Foundation for support of computer usage for the crystal structure analysis, and to the Health Science Computer Center of the University of Maryland School of Medicine for assistance with the condensation of our tables.

The Configuration of Random Polypeptide Chains. I. Experimental Results

David A. Brant and Paul J. Flory

Contribution from the Department of Chemistry, Stanford University, Stanford, California. Received March 6, 1965

The dimensionless characteristic ratio $\left\langle r^{2}\right\rangle_{0} / n_{p} l_{p}{ }^{2}$ of the measured mean square unperturbed end-to-end distance $\left\langle r^{2}\right\rangle_{0}$ to the number n_{p} of planar, trans peptide units multiplied by the square of the length l_{p} between successive α-carbons has been evaluated for four polypeptides. This ratio was deduced from intrinsic viscosities, molecular weights, and second virial coefficients. Measurements reported here on poly- β-benzylL -aspartate in m -cresol at 100°, on poly-L-glutamic acid in aqueous 0.3 M sodium phosphate at pH 7.85 and 37°, and on poly-L-lysine in aqueous 1.0 M sodium bromide at pH 4.54 and 37° yielded values of the characteristic ratio of 9.6, 8.8, and 8.6, respectively. From the data of Doty, Bradbury, and Holtzer for poly- γ-benzyl-Lglutamate in dichloroacetic acid at 25°, a value of 8.8 was calculated. No dependence of the unperturbed dimensions upon the solvents or amino acid side chains represented here is discernible within the estimated experimental uncertainty of ca. 10%.

The ordered configurations of synthetic polypeptides have attracted much interest in recent years. ${ }^{1}$ In contrast, little attention has been devoted to the random coil form of the polypeptide chain. Interpretation of changes in molecular configuration accompanying protein denaturation ${ }^{2-8}$ demands an adequate characterization of the denatured form. Denaturation usually involves disordering of the native molecule in some degree, and under certain conditions conversion to the random coil form is complete. The molecular interpretation of dimensional changes occurring in fibrous proteins ${ }^{9}$ also requires a knowledge of the random polypeptide chain dimensions.

The dimensions of the poly(benzyl glutamate) random coil in dilute dichloroacetic acid solution have been evaluated from published data ${ }^{10,11}$ by P. J. F. ${ }^{12}$ and by Kurata and Stockmayer, ${ }^{13}$ and the configuration of polysarcosine in dilute aqueous solutions has been investigated by Fessler and Ogston. ${ }^{14}$ Only these few experimentally determined polypeptide random coil dimensions appear to be available in the literature, and theoretical investigations of polypeptide coil dimensions have been limited to free rotation treatments. ${ }^{12,15}$ In view of the paucity of information on the configuration of random coil polypeptides, we have undertaken a systematic experimental study of the configuration of these molecules in dilute solution.

We shall focus attention in what follows on the average unperturbed polypeptide chain dimensions which depend only on short-range interactions within the polymer chain, i.e., those determined by the covalent chemical bonding and internal rotational potentials, including interactions between near-neighbor nonbonded groups. ${ }^{13,16}$ The unperturbed polymer chain is of particular interest inasmuch as it is amenable to theoretical treatment which permits analytical correlation of the average chain dimensions with the polymer structure. A detailed theoretical investigation of the random polypeptide chain is presented in the following paper. ${ }^{17}$

The unperturbed dimensions of polymer chains are subject in general to direct experimental determination in dilute solution in appropriate ideal or θ-solvents in which the volume exclusion effect upon the coil dimensions is nullified. ${ }^{13,16}$ Such ideal solvents are necessarily poor solvents for the polymer in question.

[^6][^7]
[^0]: (4) R. E. Reeves, J. Am. Chem. Soc., 72, 1499 (1950).
 (5) R. E. Reeves, ibid., 76, 4595 (1954).
 (6) R. Bentley, ibid., 81, 1952 (1959).
 (7) V. S. R. Rao and J. F. Foster, J. Phys. Chem., 67, 951 (1963).

[^1]: (8) R. E. Rundle and D. French, J. Am. Chem. Soc., 65, 558 (1943). (9) R. E. Rundle and D. French, ibid., 65, 1707 (1943).
 (10) R. E. Rundle, ibid., 69, 1769 (1947).
 (11) J. Holló, J. Szejtle, and J. Toth, Staerke, 13, 222 (1961).
 (12) K. Freudenberg and F. Cramer, Chem. Ber., 83, 296 (1950).
 (13) D. French, Advan. Carbohydrate Chem., 12, 189 (1957).
 (14) W. T. James, D. French, and R. E. Rundle, Acta Cryst., 12, 385 (1959)
 (15) D. French, Ph.D. Thesis, Iowa State University, 1942.

[^2]: (16) D. E. Williams and R. E. Rundle, J. Am. Chem. Soc., 86, 1660 (1964).

[^3]: (21) H. Goldstein, "Classical Mechanics," Addison-Wesley, Reading, Mass., 1959, p. 124.
 (22) E. T. Whittaker, "Analytical Dynamics," 4th Ed., Dover Publications, New York, N. Y., 1944, p. 7 ff.

[^4]: (24) R. A. Jacobson, J. A. Wunderlich, and W. N. Lipscomb, Acta Cryst., 14, 598 (1961).
 (25) A. Hordvik, Acta Chem. Scand., 15, 16 (1961).
 (26) G. A. Brown and H. A. Levy, Science, 147, 1038 (1963).

[^5]: (29) B. Zaslow and R. L. Miller, J. Am. Chem. Soc., 83, 4378 (1961)
 (30) R. E. Rundle and F. C. Edwards, ibid., 65, 2200 (1943).
 (31) F. R. Senti and L. P. Witnauer, ibid., 68, 2407 (1946)
 (32) F. R. Senti and L. P. Witnauer, ibid., 70, 1438 (1948).
 (33) F. R. Senti and L. P. Witnauer, J. Polymer Sci., 9, 115 (1952).

[^6]: (1) P. Urnes and P. Doty, Advan. Protein Chem., 16, 401 (1961).
 (2) J. A. Schellman, Compt. rend. trav. lab. Carlsberg, Ser. chim., 29, 223, 230 (1955).
 (3) W. Kauzmann, Advan. Protein Chem., 14, 1 (1959).
 (4) H. A. Scheraga, J. Phys. Chem., 64, 1917 (1960).
 (5) C. Tanford, J. Am. Chem. Soc., 84, 4240 (1962).
 (6) B. H. Havsteen and G. P. Hess, ibid., 85, 791 (1963); B. H. Havsteen, B. Labouesse, and G. P. Hess, ibid., 85, 796 (1963).
 (7) D. B. Wetlauffer, S. K. Malik, L. Stoller, and R. L. Coffin, ibid., 86, 508 (1964).
 (8) J. F. Brandts, ibid., 86, 4291, 4302 (1964).
 (9) L. Mandelkern, Ann. Rev. Phys. Chem., 15, 421 (1964).

[^7]: (10) P. Doty, J. H. Bradbury, and A. M. Holtzer, J. Am. Chem. Soc., 78, 947 (1956).
 (11) G. Spach, Compt. rend, 249, 543 (1959).
 (12) P. J. Flory, Brookhaven Symp. Biol., 13, 89 (1960).
 (13) M. Kurata and W. H. Stockmayer, Fortschr. Hochpolymer. Forsch., 3, 196 (1963).
 (14) J. H. Fessler and A. G. Ogston, Trans. Faraday Soc., 47, 667 (1951).
 (15) W. G. Crewther, J. Polymer Sci., A2, 123 (1964).
 (16) P. J. Flory, "Principles of Polymer Chemistry," Cornell University Press, Ithaca, N. Y., 1953, Chapter XIV.
 (17) D. A. Brant and P. J. Flory, J. Am. Chem. Soc., 87, 2791 (1965).

